Powered By Blogger

Minggu, 31 Oktober 2010

HUKUM HARDI-WEINBERG

I. PENDAHULUAN
A. Latar Belakang
Populasi mendelian yang berukuran besar sangat memungkinkan terjadinya kawin acak (panmiksia) di antara individu-individu anggotanya. Artinya, tiap individu memiliki peluang yang sama untuk bertemu dengan individu lain, baik dengan genotipe yang sama maupun berbeda dengannya. Dengan adanya sistem kawin acak ini, frekuensi alel akan senantiasa konstan dari generasi ke generasi. Prinsip ini dirumuskan oleh G.H. Hardy, ahli matematika dari Inggris, dan W.Weinberg, dokter dari Jerman,. sehingga selanjutnya dikenal sebagai hukum keseimbangan Hardy-Weinberg.
Di samping kawin acak, ada persyaratan lain yang harus dipenuhi bagi berlakunya hukum keseimbangan Hardy-Weinberg, yaitu tidak terjadi migrasi, mutasi, dan seleksi. Dengan perkatan lain, terjadinya peristiwa-peristiwa ini serta sistem kawin yang tidak acak akan mengakibatkan perubahan frekuensi alel.
Deduksi terhadap hukum keseimbangan Hardy-Weinberg meliputi tiga langkah, yaitu (1) dari tetua kepada gamet-gamet yang dihasilkannya, (2) dari penggabungan gamet-gamet kepada genotipe zigot yang dibentuk, dan (3) dari genotipe zigot kepada frekuensi alel pada generasi keturunan.
B. Tujuan
Tujuan dari penyusunan makalah ini adalah sebagai berikut:
1. Untuk mengetahui Aplikasi hukum Hardy-Weinberg untuk perhitungan frekuensi alel autosomal
2. Aplikasi hukum Hardy-Weinberg untuk perhitungan frekuensi alel ganda
3. Untuk mengetahui kekuatan-kekuatan apa yang menyebabkan perubahan evolusioner.
C. Manfaat
Manfaat yang dapat diambil dari penyusunan makalah ini adalah::
1. Dapat mengetahui kekuatan-kekuatan apa yang menyebabkan perubahan evolusioner.
2. Sebagai latihan dasar dalam penyusunan makalah ilmiah dan sebagai sumber referensi dan bahan bacaan.
















II. PEMBAHASAN

A. Frekuensi gen di dalam populasi
Frekuensi gen adalah perbandingan antara gen yang satu dengan gen lainnya di dalam suatu populsi. Misal suatu populasi mempunyai gen dominan A dan gen resesif a. Kedua gen tersebut sama-sama adaptif. Maka generasi yang bergenotif AA, Aa maupun aa mempunyai daya fertilitas dan viabelitas yang sama.
Misalnya populsi tersebut dimulai dengan 50% AA jantan dan 50% aa betina, maka dalam generasi (F1) semua populasi bergenotif Aa.
Apabila dilakukan perkawinan F1 dengan F1 maka frekuensi genotif F2 adalah =
25 AA : 50 Aa : 25 aa atau ¼ AA : ½ Aa : ¼ aa
Berdasarkan perhitungan tersebut maka frekuensi keseimbangan genotif F2 adalah hasil kali frekuensi gen dari masing-masing induknya, yaitu :
(A + a)(A + a) = AA + 2 Aa + aa
A2 + 2 Aa + a2
Demikian pula pada generasi F3 tetap seperti pada F2 yaitu 1 : 2 : 1. Jadi apabila setiap individu dari berbagai kesempatan melakukan perkawinan yang sama dan berlangsung secara acak, serta setiap genotif mempunyai variabilitas yang sama maka perbandingan antara genotif yang satu denganyang lainnya dari generasi ke generasi adalah tetap sama.
B. Hukum Hardy-Weinberg
Hukum hardy-Weinberg menyatakan bahwa keseimbangan frekeunsi genotif Aa, Aa, aa serta perbandingan gen A dan a dari genersi ke generasi akan selalu sama, apabila :
- populasi harus cukup besar suaya tidak mungkin memberi peluang untuk mengubah secara sendirian frekuensi gen
- tidak terjadi mutasi
- tidak terjadi migrasi, baik keluar maupun masuk
- tidak terjadi seleksi alam
- perkawinan terjadi secara acak atau random
- reproduksi berlangsung sukses dan secara acak
Hukum Hardy-Weinberg, dapat dirumuskan sebagai berikut : p2 + 2 pq + q2 = 1
Apabila frekuensi alel adalah 0,9 untuk p dan 0.1 untuk q , maka persamaannya adalah sebagai berikut :
p2 + 2 pq + q2 = 1
(0,9)(0,9) + 2 (0,9)(0,9) + (0,1)(0,1) = 1
0,81 + 0,18 + 0,01 = 1
Dari rumus Hardy –Weinberg menunjukan frekuensi dari tiga genotif, yaitu :
p2 = frekuensi dar A/A = 0,81
2 pq = frekuensi dari A/a = 0,18
q2 = frekuensi dari a/a = 0,01
Untuk lebih memahami hukum Hardy-Weinberg, perhatikan soal berikut. Dalam masyarakat, frekuensi orang yang menderita albino adalah 1 : 10.000. Berapa prosentase orang normal ?
p = normal
q = albino
Orang albino bergenotif aa = q2 =
q2 =
= 0,01
p + q = 1
p = 1 - 0,01
= 0,99
Orang normal heterozigot begenotif Aa memiliki frekuensi 2 pq = 2 x 0,99 x 0,01
= 0,0198
= 0,0198 x 100%
= 1,08%
Orang normal hompzigot bergenotif AA = p2
= (0,99)2
= 0,9801
= 0,9801 x 100%
= 98,01%

C. Aplikasi hukum Hardy-Weinberg untuk perhitungan frekuensi alel autosomal
Kemampuan sesesorang untuk merasakan zat kimia feniltiokarbamid (PTC) disebabkan oleh alel autosomal dominan T. Individu dengan genotipe TT dan Tt dapat merasakan PTC, sedang individu tt tidak. Pada suatu pengujian terhadap 228 orang diperoleh bahwa hanya 160 di antaranya yang dapat merasakan PTC. Dari 160 orang ini dapat dihitung individu yang bergenotipe TT dan Tt sebagai berikut.
Individu yang tidak dapat merasakan PTC (genotipe tt) jumlahnya 228 - 160 = 68 sehingga frekuensi genotipe tt = 68/228 = 0,30. Dengan mudah dapat diperoleh frekuensi alel t = √ 0,30 = 0,55 dan frekuensi alel T = 1 - 0,55 = 0,45. Selanjutnya, frekuensi genotipe TT = (0,45)2 = 0,20, sedang frekuensi genotipe Tt = 2(0,45)(0,55) = 0,50. Banyaknya individu yang bergenotipe TT = 0,20 x 228 =46, sedang individu yang bergenotipe Tt = 0,50 x 228 = 114. Jika TT dijumlahkan dengan Tt, maka diperoleh individu sebanyak 160 orang, yang semuanya dapat merasakan PTC
D. Aplikasi hukum Hardy-Weinberg untuk perhitungan frekuensi alel ganda
Salah satu contoh alel ganda yang sering dikemukakan adalah alel pengatur golongan darah sistem ABO pada manusia. Seperti telah kita bicarakan pada Bab II, sistem ini diatur oleh tiga buah alel, yaitu IA, IB, dan I0. Jika frekuensi ketiga alel tersebut masing-masing adalah p, q, dan r, maka sebaran frekuensi genotipenya = (p + q + r)2 = p2 + 2pq + 2pr + q2 + 2qr + q2. Frekuensi golongan darah A adalah penjumlahan frekuensi genotipe IA IA dan IA I0 , yakni p2 + 2pr. Demikian pula, frekuensi golongan darah B, AB, dan O pada suatu populasi dapat dicari dari sebaran frekuensi tersebut. Sebaliknya, dari data frekuensi golongan darah (fenotipe) dapat dihitung besarnya frekuensi alel.
Misalnya, dari 500 mahasiswa Fakultas Biologi Unsoed diketahui 196 orang bergolongan darah A, 73 golongan B, 205 O, dan 26 AB. Alel yang langsung dapat dihitung frekuensinya adalah I0 , yang merupakan akar kuadrat frekuensi O. Jadi, frekuensi I0 = √ 205/500 = 0,64. Selanjutnya, jumlah frekuensi A dan O = p2 + 2pr + r2 = (p + r)2 = (1 - q) 2 sehingga akar kuadrat frekuensi A + O = 1 - q. Dengan demikian, frekuensi IB (q) = 1 - akar kuadrat frekuensi A + O = 1 - √(196 + 205)/500 = 0,11. Dengan cara yang sama dapat diperoleh frekuensi alel IA (p) = 1 - √(73 + 205)/500 = 0,25.
Jika syarat yang diajukan dalam kesetimbangan Hardy Weinberg banyak dilanggar, jelas akan terjadi evolusi pada populasi tersebut, yang akan menyebabkan perubahan perbandingan alel dalam populasi tersebut. Definisi evolusi sekarang dapat dikatakan sebagai:”Perubahan dari generasi ke generasi dalam hal frekuensi alel atau genotipe populasi”. Dalam perubahan dalam kumpulan gen ini (yang merupakan skala terkecil), spesifik dikenal sebagai mikroevolusi. Akan dibahas penyebab mikroevolusi=gene flow/aliran genetik,genetic drift/hanyutan genetik,mutasi,perkawinan tak acak,dan seleksi.
E. Migrasi
Di atas telah disebutkan bahwa migrasi merupakan salah satu syarat yang harus dipenuhi bagi berlakunya hukum keseimbangan Hardy-Weinberg. Hal ini berarti bahwa peristiwa migrasi akan menyebabkan terjadinya perubahan frekuensi alel. Lebih jauh, kuantifikasi migrasi dalam bentuk laju migrasi (lazim dilambangkan sebagai m), sering kali digunakan untuk menjelaskan adanya perbedaan frekuensi alel tertentu di antara berbagai populasi, misalnya perbedaan frekuensi golongan darah sistem ABO yang terlihat sangat nyata antara ras yang satu dan lainnya.
Laju migrasi dapat didefinisikan sebagai proporsi atau persentase alel tertentu di dalam suatu populasi yang digantikan oleh alel migran pada tiap generasi. Sebagai contoh, jika pada tiap generasi sebanyak 80 dari 1000 ekor ikan normal digantikan oleh ikan albino, maka dikatakan bahwa laju migrasinya 0,08 atau 8%.
Secara matematika, hubungan antara perubahan frekuensi alel dan laju migrasi dapat dilihat sebagai persamaan berikut ini.
pn - P = (po - P)(1 - m)n
pn = frekuensi alel pada populasi yang diamati setelah n generasi migrasi
P = frekuensi alel pada populasi migran
po = frekuensi alel pada populasi awal (sebelum terjadi migrasi)
m = laju migrasi
n = jumlah generasi
F. Mutasi
Faktor lain yang dapat menyebabkan terjadinya perubahan frekuensi alel adalah mutasi. Namun, peristiwa yang sangat mendasari proses evolusi ini sebenarnya tidak begitu nyata pengaruhnya dalam perubahan frekuensi alel. Hal ini terutama karena laju mutasi yang umumnya terlalu rendah untuk dapat menyebabkan terjadinya perubahan frekuensi alel. Selain itu, individu-individu mutan biasanya mempunyai daya hidup (viabilitas), dan juga tingkat kesuburan (fertilitas), yang rendah.
Dari kenyataan tersebut di atas dapat dimengerti bahwa mutasi hanya akan memberikan pengaruh nyata terhadap perubahan frekuensi alel jika mutasi berlangsung berulang kali (recurrent mutation) dan mutan yang dihasilkan memiliki kemampuan untuk beradaptasi dengan lingkungan yang ada.
Hubungan matematika antara laju mutasi dan perubahan frekuensi alel dapat dirumuskan seperti pada contoh berikut ini. Misalnya, di dalam suatu populasi terdapat alel A dan a, masing-masing dengan frekuensi awal po dan qo. Mutasi berlangsung dari A ke a dengan laju mutasi sebesar u. Sebaliknya, laju mutasi alel a menjadi A adalah v. Dengan demikian, perubahan frekuensi alel A akibat mutasi adalah ∆p = vqo - upo, sedang perubahan frekuensi alel a akibat mutasi adalah ∆q = upo - vqo.
Ketika dicapai keseimbangan di antara kedua arah mutasi tersebut nilai ∆p dan ∆q adalah 0. Oleh karena itu, vqo = upo, atau secara umum vq = up. Jika persamaan ini dielaborasi, maka akan didapatkan p = v/(u + v) dan q = u/(u + v).
G. Seleksi
Sebegitu jauh kita mengasumsikan bahwa semua individu di dalam populasi akan memberikan kontribusi jumlah keturunan yang sama kepada generasi berikutnya. Namun, kenyataan yang sebenarnya sering dijumpai tidaklah demikian. Individu-individu dapat memberikan kontribusi genetik yang berbeda karena mereka mempunyai daya hidup dan tingkat kesuburan yang berbeda.
Proporsi atau persentase kontribusi genetik suatu individu kepada generasi berikutnya dikenal sebagai fitnes relatif atau nilai seleksi individu tersebut. Nilai fitnes relatif berkisar antara 0 dan 1. Genotipe superior di dalam suatu populasi, atau disebut juga genotipe baku, dikatakan memiliki nilai fitnes relatif sama dengan 1, sementara untuk genotipe-genotipe lainnya nilai fitnes relatif besarnya kurang dari 1. Proporsi pengurangan kontribusi genetik suatu genotipe bila dibandingkan dengan kontribusi genetik genotipe baku disebut koefisien seleksi (s) genotipe tersebut. Dengan perkataan lain, nilai fitnes relatif genotipe ini adalah 1 - s.
Kembali kita misalkan bahwa di dalam suatu populasi terdapat genotipe AA, Aa, dan aa. Kondisi dominansi ketiga genotipe ini berdasarkan atas nilai fitnes relatifnya dapat dilihat pada Gambar 15.2 berikut ini.

aa Aa AA
(1-s) (1-½s) 1
a)

aa Aa AA
(1-s) (1-½s) 1
b)

aa AA/Aa
(1-s) 1
c)

aa AA Aa
(1-s2) (1-s1) 1
d)
Fitnes relatif
Gambar 15.2. Berbagai kondisi dominansi dilihat dari nilai fitnes relatifnya

a) Semi dominansi
b) Dominansi parsial
c) Dominansi penuh
d) Overdominansi
Pada kondisi semi dominansi dan dominansi parsial (Gambar 15.2 a dan b) genotipe Aa memberikan kontribusi genetik yang lebih kecil bila dibandingkan dengan kontribusi genotipe baku (AA), sedang pada kondisi dominansi penuh (Gambar 15.2 c) genotipe ini memberikan kontribusi genetik sama besar dengan kontribusi genotipe AA. Bahkan pada kondisi overdominansi, genotipe Aa menjadi genotipe baku dan kontribusi genetiknya justru lebih besar daripada kontribusi genotipe AA. Dominansi heterozigot (kondisi overdominansi) ini dapat dijumpai misalnya pada kasus resistensi individu karier anemia bulan sabit (sickle cell anemia) terhadap penyakit malaria. Individu dengan genotipe homozigot HbSHbS akan mengalami pengkristalan molekul hemoglobin, dan eritrositnya berbentuk seperti bulan sabit, sehingga individu ini akan menderita anemia berat dan biasanya meninggal pada usia muda. Namun, individu heterozigot HbSHbA justru memiliki ketahanan yang lebih tinggi terhadap infeksi parasit penyebab malaria bila dibandingkan dengan individu normal (HbAHbA). Di tempat-tempat yang menjadi endemi penyakit malaria, genotipe HbSHbA merupakan genotipe baku (fitnes relatif = 1), sedang individu normal HbAHbA mempunyai nilai fitnes relatif kurang dari 1.
Perubahan frekuensi alel akibat seleksi berlangsung sesuai dengan kondisi dominansi yang ada. Pada kondisi dominansi penuh, misalnya, perubahan frekuensi alel dapat dihitung sebagai berikut.
Genotipe AA Aa aa Total
Frekuensi awal p2 2pq q2 1
Fitnes relatif 1 1 1 - s
Kontribusi genetik p2 2pq q2(1 - s ) 1 - sq2
Terlihat bahwa kontribusi genetik total mejadi lebih kecil dari 1 karena genotipe aa mempunyai nilai fitnes relatif 1 - s. Dari rumus hubungan matematika antara frekuensi alel dan frekuensi genotipe dapat dihitung besarnya frekuensi alel a setelah seleksi, yaitu q1 = q2(1 - s ) + pq / 1-sq2. Jika perubahan frekuensi alel a dilambangkan dengan ∆q, maka ∆q = q1 - q = q2(1 - s ) + pq / 1-sq2 - q. Setelah persamaan ini kita elaborasi akan didapatkan ∆q = - sq2( 1 - q) / 1 - sq2. Untuk kondisi dominansi yang lain besarnya perubahan frekuensi alel akibat seleksi dapat dirumuskan dengan cara seperti di atas.
H. Sistem Kawin Tidak Acak
Faktor lain yang meyebabkan gangguan keseimbangan Hardy-Weinberg adalah sistem kawin tidak acak (non random mating). Jika dilihat dari segi fenotipe, ada sistem kawin tidak acak yang dikenal sebagai perkawinan asortatif. Dengan perkataan lain, perkawinan asortatif adalah sistem kawin tidak acak yang didasarkan atas fenotipe.
Perkawinan asortatif dapat berupa perkawinan asortatif positif atau asortatif negatif (disasortatif). Pada perkawinan asortatif positif individu-individu yang mempunyai fenotipe sama cenderung untuk lebih sering bertemu bila dibandingkan dengan individu-individu dengan fenotipe berbeda. Sebaliknya, pada perkawinan asortatif negatif individu-individu yang mempunyai fenotipe berbeda cenderung untuk lebih sering bertemu bila dibandingkan dengan individu-individu dengan fenotipe yang sama.
Di samping perkawinan asortatif ada pula sistem kawin tidak acak yang tidak memandang fenotipe individu tetapi dilihat dari hubungan genetiknya. Sistem kawin semacam ini dapat dibedakan menjadi dua macam, yaitu silang dalam (inbreeding) dan silang luar (outbreeding). Silang dalam adalah perkawinan di antara individu-individu yang secara genetik memiliki hubungan kekerabatan, sedang silang luar adalah perkawinan di antara individu-individu yang secara genetik tidak memiliki hubungan kekerabatan. Perkawinan asortatif positif dan silang dalam akan meningkatkan frekuensi genotipe homozigot. Sebaliknya, perkawinan asortatif negatif dan silang luar akan meningkatkan frekuensi genotipe heterozigot.
I. Silang dalam
Contoh silang dalam yang paling ekstrim dapat dilihat pada tanaman yang melakukan penyerbukan sendiri. Katakanlah generasi pertama suatu populasi tanaman menyerbuk sendiri hanya terdiri atas individu-individu dengan genotipe Aa. Oleh karena terjadi penyerbukan sendiri di antara genotipe Aa, maka pada generasi kedua dari seluruh populasi akan terdapat genotipe AA, Aa, dan aa masing-masing sebanyak 1/4, 1/2, dan 1/4 bagian. Pada generasi ketiga genotipe AA dan aa akan bertambah 1/8 bagian yang berasal dari segregasi genotipe Aa pada generasi kedua. Sebaliknya, genotipe Aa akan berkurang menjadi 1/4 bagian sehingga populasi generasi ketiga akan terdiri atas (1/4+1/8) AA, 1/4 Aa, dan (1/4+1/8) aa atau 3/8 AA, 1/4 Aa, 3/8 aa. Dengan demikian, sampai dengan generasi ketiga saja sudah terlihat bahwa frekuensi genotipe homozigot, baik AA maupun aa, mengalami peningkatan, sedang frekuensi heterozigot Aa berkurang.
Genotipe homozigot untuk suatu lokus tertentu - jika kita berbicara individu normal diploid - mempunyai dua buah alel yang sama pada lokus tersebut. Persamaan di antara dua alel pada genotipe homozigot dapat terjadi dengan dua kemungkinan. Pertama, mereka secara fungsional sama sehingga menghasilkan fenotipe yang sama pula. Dua alel semacam ini dikatakan sebagai alel serupa (alike in state). Kemungkinan kedua, mereka berasal dari hasil replikasi sebuah alel pada generasi sebelumnya. Jika hal ini yang terjadi, maka kedua alel tersebut dikatakan seasal atau identik (identical by descent).
Untuk menggambarkan besarnya peluang bahwa dua buah alel yang sama pada individu homozigot merupakan alel identik digunakan suatu nilai yang disebut sebagai koefisien silang dalam (inbreeding coefficient). Nilai ini besarnya berkisar dari 0 hingga 1, dan biasanya dilambangkan dengan F. Nilai F sama dengan 0 apabila kedua alel pada individu homozigot tidak mempunyai asal- usul yang sama atau merupakan hasil kawin acak. Sebaliknya, nilai F sama dengan 1 apabila kedua alel sepenuhnya merupakan alel identik atau berasal dari leluhur bersama (common ancestor) yang sangat dekat.
Besarnya nilai F dapat dihitung dari diagram silsilah seperti contoh pada Gambar 15.3. Misalnya, individu A kawin dengan B menghasilkan dua anak, yaitu C dan D. Selanjutnya, kakak beradik C dan D kawin, mempunyai anak X. Koefisien silang dalam individu X dapat dihitung sebagai berikut.
A B * Hitung jumlah loop. Loop adalah jalan yang menghubungkan kedua orang tua
C D X (C dan D) melewati leluhur bersama (A dan B). Pada soal ini terdapat dua
X loop, yaitu CAD dan CBD.
Gambar 15.3.Contoh diagram silsilah *Hitung jumlah individu yang terdapat pada tiap loop sebagai nilai n.
* Hitung nilai F dengan rumus :
F = Σ (½)n(1 + FA)
n = jumlah individu yang terdapat pada tiap loop (pada soal ini terdapat 3 individu, baik pada loop CAD maupun CBD)
FA = koefisien silang dalam leluhur bersama (pada soal ini FA dan FB masing-masing sama dengan 0 karena dianggap sebagai individu hasil kawin acak)
Dengan demikian, nilai F individu X (FX) pada contoh soal tersebut di atas adalah (½)3(1 + 0) + (½)3(1 + 0) = ¼. Hal ini berarti bahwa peluang bertemunya alel-alel identik yang berasal dari leluhur bersama, baik A maupun B, pada individu X besarnya ¼.
Makin besar nilai F, makin cepat diperoleh tingkat homozigositas yang tinggi. Sebagai gambaran, pembuahan sendiri dapat mencapai homozigositas 100% pada generasi keenam, sementara perkawinan antara saudara kandung baru mencapainya pada generasi keenam belas. Peningkatan homozigositas akibat silang dalam dapat menimbulkan tekanan silang dalam (inbreeding depression) apabila di antara alel-alel identik yang bertemu terdapat sejumlah alel resesif yang kurang menguntungkan.
Perubahan frekuensi alel yang disebabkan oleh terjadinya silang dalam dapat dihitung dari perubahan frekuensi genotipe seperti pada Tabel 15.3.
Tabel 15.3. Frekuensi genotipe hasil kawin acak
dan silang dalam
Genotipe Frekuensi
Kawin acak Silang dalam
AA p2 p2 (1 - F) + pF
Aa 2 pq 2 pq (1 - F)
aa q2 q2 (1 - F) + qF
Jika nilai F = 0, maka frekuensi genotipe AA, Aa, dan aa masing-masing adalah p2, 2 pq, dan q2 . Frekuensi tersebut ternyata sama dengan frekuensi genotipe hasil kawin acak. Jika nilai F = 1, maka frekuensi genotipe AA, Aa, dan aa masing-masing menjadi p, 0, dan q. Hal ini berarti di dalam populasi hanya tinggal individu homozigot, sedang individu heterozigot tidak dijumpai lagi.
J. Silang luar
Berkebalikan dengan silang dalam, silang luar akan meningkatkan frekuensi heterozigot. Di samping itu, jika silang dalam dapat menyebabkan terjadinya tekanan silang dalam yang berpengaruh buruk terhadap individu yang dihasilkan, silang luar justru dapat memunculkan individu hibrid dengan sifat-sifat yang lebih baik daripada kedua tetuanya yang homozigot. Fenomena keunggulan yang diperlihatkan oleh individu hibrid hasil persilangan dua tetua galur murni (homozigot) disebut sebagai vigor hibrida atau heterosis.
Ada beberapa teori mengenai mekanisme genetik yang menjelaskan terjadinya heterosis. Salah satu di antaranya adalah teori dominansi, yang pada prinsipnya menyebutkan bahwa alel-alel reseif merugikan yang dibawa oleh masing-masing galur murni akan tertutupi oleh alel dominan pada individu hibrid yang heterozigot. Misalnya, ada alel A yang menyebabkan akar tanaman tumbuh kuat sementara alel a menjadikan akar tanaman lemah. Sementara itu, alel B menyebabkan batang menjadi kokoh, sedang alel b menyebabkan batang lemah. Persilangan antara galur murni AAbb (akar kuat, batang lemah) dan aaBB (akar lemah, batang kuat) akan menghasilkan hibrid AaBb yang mempunyai akar dan batang kuat.
Fenomena heterosis sudah sering sekali dimanfaatkan pada bidang pemuliaan tanaman, antara lain untuk merakit varietas jagung hibrida. Galur murni A disilangkan dengan galur murni B, mendapatkan hibrid H. Namun, karena biji hibrid H ini dibawa oleh tongkol tetuanya (A atau B) yang kecil, maka jumlah bijinya menjadi sedikit dan tidak cukup untuk dijual kepada petani. Oleh karena itu, jagung hibrida yang dipasarkan biasanya bukan hasil silang tunggal (single cross) seperti itu, melainkan hasil silang tiga arah (three-way cross) atau silang ganda (double cross). Pada silang tiga arah hibrid H digunakan sebagai tetua betina untuk disilangkan lagi dengan galur murni lain sehingga biji hibrid yang dihasilkan akan dibawa oleh tongkol hibrid H yang ukurannya besar. Agak berbeda dengan silang tiga arah, pada silang ganda hibrid H disilangkan dengan hibrid I hasil silang tunggal antara galur murni C dan D. Dalam silang ganda ini, sebagai tetua betina dapat digunakan baik hibrid H maupun hibrid I karena kedua-duanya mempunyai tongkol yang besar.
III. PENUTUP
A. Kesimpulan.
Berdasarkan pembahasan diatas maka dapat ditari kesimpulan jika kekuatan-kekuatan yang menyebabkan perubahan evolusioner, kita harus pelajari keadaan bila hukum Hardi-Weinberg yaitu:
1. migrasi merupakan salah satu syarat yang harus dipenuhi bagi berlakunya hukum keseimbangan Hardy-Weinberg. Hal ini berarti bahwa peristiwa migrasi akan menyebabkan terjadinya perubahan frekuensi alel.
2. Faktor lain yang dapat menyebabkan terjadinya perubahan frekuensi alel adalah mutasi. Namun, peristiwa yang sangat mendasari proses evolusi ini sebenarnya tidak begitu nyata pengaruhnya dalam perubahan frekuensi alel. Hal ini terutama karena laju mutasi yang umumnya terlalu rendah untuk dapat menyebabkan terjadinya perubahan frekuensi alel.
3. Seleksi Sebegitu jauh kita mengasumsikan bahwa semua individu di dalam populasi akan memberikan kontribusi jumlah keturunan yang sama kepada generasi berikutnya. Namun, kenyataan yang sebenarnya sering dijumpai tidaklah demikian. Individu-individu dapat memberikan kontribusi genetik yang berbeda karena mereka mempunyai daya hidup dan tingkat kesuburan yang berbeda
4. Faktor lain yang meyebabkan gangguan keseimbangan Hardy-Weinberg adalah sistem kawin tidak acak (non random mating). Jika dilihat dari segi fenotipe, ada sistem kawin tidak acak yang dikenal sebagai perkawinan asortatif.
5. Contoh silang dalam yang paling ekstrim dapat dilihat pada tanaman yang melakukan penyerbukan sendiri.
6. Azas Hardi-Weinberg itu menyatakan bahwa frekuensi alel dan frekuensi genotif dalam suatu populasi akan tetap konstan, yakni berada dalam kesetimbangan dari suatu generasi ke generasi lainnya kecuali apabila dapat pengaruh-pengaruh tertentu yang mengganggu kesetimbangan tersebut.
B. Saran
Frekuensi alel yang statis dalam suatu populasi dari generasi ke generasi mengasumsikan adanya perkawinan acak, tidak adanya mutasi, tidak adanya migrasi atau emigrasi, populasi yang besarnya tak terhingga, dan ketiadaan tekanan seleksi terhadap sifat-sifat tertentu.
SUMBER:
Kimball,J.W. 1983. Biologi Edisi Ke-5 Jilid 3. Erlangga. Jakarta
www.wikipedia.com






MAKALAH

(Frekuensi gen dalam populasi dan hukum keseimbangan Hardy-Weinberg.)



Oleh :
KELOMPOK VII
ANGGOTA
MARHUZAD HAKIM : A1C2 07 078
AGUS KURNIAWAN PUTRA : A1C2 07 059
ROLAN JULYUS : A1C2 07 020
RIKARDO : A1C2 07 106
ASTUTI NUR : A1C2 07 016
SULMAYANTI SULUWI : A1C2 07 0


FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN
PROGRAM STUDI PENDIDIKAN BIOLOGI
JURUSAN PENDIDIKAN MIPA
UNIVERSITAH HALUOLEO
KENDARI
2010